Skip to main content
Log in

Aquatic invertebrate responses to fish presence and vegetation complexity in Western Boreal wetlands, with implications for Waterbird productivity

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Aquatic invertebrates are essential to wetland function, serving as the key trophic link between primary producers, fish, and waterfowl in boreal wetlands. We studied how both aquatic vegetation complexity and prevalence, and fish presence, could be used to predict the distribution of invertebrate biomass in 24 wetlands of the Western Boreal Forest (WBF). The percent volume occupied by aquatic plants was significantly positively associated with overall invertebrate biomass per liter (P = 0.009). Particular invertebrate functional feeding groups were correlated with types of aquatic macrophyte architecture; herbivorous invertebrate biomass (mg/L) was greater in more complex aquatic environments, and predatory invertebrate biomass was greater in environments with simple plant architecture. Wetlands inhabited by Brook Stickleback (Culaea inconstans) had reduced invertebrate biomass of the predatory, non-predatory (excluding omnivores), and gatherer/collector functional feeding groups. Gatherer/collector, predator, shredder, and piercer invertebrate groups were negatively correlated with dissected leaved plant dominance in those wetlands without fish. These invertebrate groups comprise the bulk of invertebrate protein available to nesting hen mallards and their ducklings. We suggest that the presence of stickleback and/or dominance of dissected leaved plants in the wetlands of the WBF results in decreased food supply for hatchling waterfowl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abjornsson, K., C. Bronmark, and L. A. Hansson. 2002. The relative importance of lethal and non-lethal effects of fish on insect colonisation of ponds. Freshwater Biology 47: 1489–1495.

    Article  Google Scholar 

  • Alberta Environmental Protection. 1998. Natural Regions and Subregions of Alberta—Base Map. Resource Data Division, Edmonton, Alberta, Canada.

    Google Scholar 

  • Askevold, I. S. 1987. The genus Neohaemonia (Szekesay) in North America: systematics, reconstructed phylogeny, and geographic history. American Entomological Society Transactions 113: 361–430.

    Google Scholar 

  • Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. Second Edition. U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA. WA. EPA 841-B-99-002.

    Google Scholar 

  • Batzer, D. P., C. R. Pusateri, and R. Vetter. 2000. Impacts of fish predation on marsh invertebrates: direct and indirect effects. Wetlands 20: 307–312.

    Article  Google Scholar 

  • Batzer, D. P. and S. A. Wissinger. 1996. Ecology of insect communities in nontidal wetlands. Annual Review of Entomology 41: 75–100.

    Article  CAS  PubMed  Google Scholar 

  • Bendell, B. E. and D. K. McNicol. 1995. The diet of insectivorous ducklings and the acidification of small Ontario lakes. Canadian Journal of Zoology 73: 2044–2051.

    Article  Google Scholar 

  • Bengtson, S. 1975. Food of ducklings of surface feeding duck at Lake Myvatn, Iceland. Ornis Fennica 52: 1–4.

    Google Scholar 

  • Berte, S. B. and G. Pritchard. 1983. The life history of Glyphopsyche irrorata: A caddisfly that over winters as an adult. Holartic Ecology 16: 69–73.

    Google Scholar 

  • Bouffard, S. H. and M. A. Hanson. 1997. Fish in waterfowl marshes: waterfowl managers’ perspective. Wildlife Society Bulletin 25: 146–157.

    Google Scholar 

  • Campeau, S., H. R. Murkin, and R. D. Titman. 1994. Relative importance of algae and emergent plant litter to freshwater marsh invertebrates. Canadian Journal of Fisheries and Aquatic Sciences 51: 681–692.

    Article  Google Scholar 

  • Chambers, P. A. 1987. Light and nutrients in the control of aquatic plant community structure. 2. Insitu observations. Journal of Ecology 75: 621–628.

    Article  Google Scholar 

  • Cheruvelil, K. S., P. A. Soranno, J. D. Madsen, and M. J. Roberson. 2002. Plant architecture and epiphytic macroinvertebrate communities: the role of an exotic dissected macrophyte. Journal of the North American Benthological Society 21: 261–277.

    Article  Google Scholar 

  • Chura, N. J. 1961. Food availability and preferences of juvenile mallards. Transactions of the North American Wildlife and Natural Resources Conference 26: 121–134.

    Google Scholar 

  • Clifford, H. 1991. Aquatic Invertebrates of Alberta. University of Alberta Press, Edmonton, Alberta, Canada.

    Google Scholar 

  • Corbet, P. S. 1999. Dragonflies: Behaviour and Ecology of Odonata. Harley Books, Martins, England.

    Google Scholar 

  • Cox, R. R., M. A. Hanson, C. C. Roy, N. H. Euliss, D. H. Johnson, and M. G. Butler. 1998. Mallard duckling growth and survival in relation to aquatic invertebrates. Journal of Wildlife Management 62: 124–133.

    Article  Google Scholar 

  • Cyr, H. and J. A. Downing. 1988. The abundance of phytophilous invertebrates on different species of submerged macrophytes. Freshwater Biology 20: 365–374.

    Article  Google Scholar 

  • Danylchuk, A. J. and W. M. Tonn. 2003. Natural disturbances and fish: local and regional influences on winterkill of fathead minnows in boreal lakes. Transactions of the American Fisheries Society 132: 289–298.

    Article  Google Scholar 

  • de Szalay, F. A., L. C. Carroll, J. A. Beam, and V. H. Resh. 2003. Temporal overlap of nesting duck and aquatic invertebrate abundances in the grasslands ecological area, California, USA. Wetlands 23: 739–749.

    Article  Google Scholar 

  • de Szalay, F. A. and V. H. Resh. 1996. Spatial and temporal variability of trophic relationships among aquatic macroinvertebrates in a seasonal marsh. Wetlands 16: 458–466.

    Article  Google Scholar 

  • de Szalay, F. A. and V. H. Resh. 2000. Factors influencing macro-invertebrate colonization of seasonal wetlands: reponses to emergent plant cover. Freshwater Biology 45: 295–308.

    Article  Google Scholar 

  • Deding, G. L. 1988. Gut analysis of diving beetles (Coleoptera: Dytiscidae). Natura Jutlandica 22: 177–184.

    Google Scholar 

  • DesGranges, J. L. and C. Gagnon. 1994. Duckling response to changes in the trophic web of acidified lakes. Hydrobiologia 279/ 280: 207–221.

    Article  Google Scholar 

  • Diehl, S. 1992. Fish predation and benthic community structure: The role of omnivory and habitat complexity. Ecology 73: 1646–1661.

    Article  Google Scholar 

  • Diehl, S. and R. Kornijow. 1998. Influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. p. 24–46. In E. Jeppesen, M. Sondergaard, M. Sondergaard, and K. Christoffersen (eds.) The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York, NY, USA.

    Google Scholar 

  • Donaghey, R. 1974. Waterfowl use of Boreal Forest waterbodies near Utikuma Lake, Northern Alberta. M.Sc. Thesis. University of Alberta, Edmonton, AB, Canada.

    Google Scholar 

  • Driver, E. A., L. G. Sugden, and R. J. Kovach. 1974. Calorific, chemical and physical values of potential duck foods. Freshwater Biology 4: 281–292.

    Article  Google Scholar 

  • Dudley, T. L. 1988. The role of plant complexity and epiphyton in colonization of macrophytes by stream insects. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 23: 1153–1158.

    Google Scholar 

  • Dzus, E. H. and R. G. Clark. 1997. Overland travel, food abundance, and wetland use by mallards: relationships with offspring survival. Wilson Bulletin 109: 504–515.

    Google Scholar 

  • Edmunds, G. F., Jr., S. T. Jensen, and L. Berner. 1976. The Mayflies of North and Central America. University of Minnesota Press, Minneapolis, MN, USA.

    Google Scholar 

  • Elmberg, J., P. Nummi, H. Pöysä, and K. Sjöberg. 1993. Factors affecting species number and density of dabbling duck guilds in North Europe. Ecography 16: 251–260.

    Article  Google Scholar 

  • Elmberg, J., K. Sjöberg, H. Pöysä, and P. Nummi. 2000. Abundance-distribution relationships on interacting trophic levels: the case of lake-nesting waterfowl and dytiscid water beetles. Journal of Biogeography 27: 821–827.

    Article  Google Scholar 

  • Evans, J. E., E. E. Prepas, K. J. Devito, and B. J. Kotak. 2000. Phosphorus dynamics in shallow subsurface waters in an uncut and cut subcatchment of a lake on the Boreal Plain. Canadian Journal of Fisheries and Aquatic Sciences 57: 60–72.

    Article  CAS  Google Scholar 

  • Giles, N. 1994. Tufted duck (Aythya fuligula) habitat use and brood survival increases after fish removal from gravel pit lakes. Hydrobiologia 279/280: 387–392.

    Article  Google Scholar 

  • Gross, E. M. 2003. Differential response of tellimagrandin II and total bioactive hydrolysable tannins in an aquatic angiosperm to changes in light and nitrogen. Oikos 103: 497–504.

    Article  CAS  Google Scholar 

  • Hall, D. L., M. R. Willig, D. R. Moorhead, R. W. Sites, E. B. Fish, and T. R. Mollhagen. 2004. Aquatic macroinvertebrate diversity of playa wetlands: the role of landscape and island biogeographic characteristics. Wetlands 24: 77–91.

    Article  Google Scholar 

  • Huryn, A. D. and K. E. Gibbs. 1999. Riparian sedge meadows in Maine, a macroinvertebrate community structured by river-flood-plain interaction. p. 363–382. In D. P. Batzer, R. B. Rader, and S. A. Wissinger (eds.) Invertebrates in Freshwater Wetlands of North America: Ecology and Management. John Wiley & Sons, Inc. New York, NY, USA.

    Google Scholar 

  • Jeffries, M. 1992. Invertebrate colonization of artificial pondweeds of differing fractal dimension. Oikos 67: 142–148.

    Article  Google Scholar 

  • Jongman, R. H. G., C. J. F. ter Braak, and O. F. R. van Tongeren. 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Joynt, A. and M. G. Sullivan. 2003. Fish of Alberta. Lone Pine Publishing, Edmonton, AB, Canada.

    Google Scholar 

  • Juliano, S. A. 1988. Chrysomelid beetles on waterlily leaves: herbivore density, leaf survival, and herbivore maturation. Ecology 69: 1294–1298.

    Article  Google Scholar 

  • Kornijow, R., R. D. Gulati, and E. van Donk. 1990. Hydrophyte-macroinvertebrate interactions in Zwemlust, a lake undergoing biomanipulation. Hydrobiologia 200/201: 467–74.

    Article  Google Scholar 

  • Lantsov, V. I. 1984. Ecology, morphology and taxonomy of artic craneflies of the genus Prionocera (Diptera: Tipulidae). Zoologicheskij Zhurnal 63: 1196–1204.

    Google Scholar 

  • Leu, E., A. Krieger-Liszkay, C. Goussias, and E. M. Gross. 2002. Polyphenolic Allelochemicals from the Aquatic Angiosperm Myriophyllum spicatum Inhibit Photosystem II. Plant Physiology 130: 2011–2018.

    Article  CAS  PubMed  Google Scholar 

  • Lillie, R. A. 1991. The adult aquatic and semiaquatic Coleoptera of nine northwestern Wisconsin wetlands. Coleopterists Bulletin 45: 101–111.

    Google Scholar 

  • Lillie, R. A. and J. Budd. 1992. Habitat architecture of Myriophyllum spicatum L. as an index to habitat quality for fish and macroinvertebrates. Journal of Freshwater Ecology 7: 113–125.

    Google Scholar 

  • Lodge, D. A. 1985. Macrophyte-gastropod associations: observations and experiments on macrophyte choice by gastropods. Freshwater Biology 15: 695–708.

    Article  Google Scholar 

  • MacNeil, C., J. T. A. Dick, and R. W. Elwood. 1997. The trophic ecology of freshwater Gammarus (Crustacea: Amphipoda); problems and perspectives concerning the functional feeding group concept. Biological Review 72: 349–364.

    Google Scholar 

  • Manly, B. F. J. 1992. The Design and Analysis of Research Studies. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Martin, M. M., J. J. Kukor, J. S. Martin, D. L. Lawson, and R. W. Merrit. 1981. Digestive enzymes of larvae of three species of caddisflies. Insect Biochemistry 11: 501–505.

    Article  CAS  Google Scholar 

  • McCune, B. and J. B. Grace. 2002. Analysis of Ecological Communities. MjM Software, Gleneden Beach, OR, USA.

    Google Scholar 

  • Merritt, R. W. and K. W. Cummins, eds. 1996. An Introduction to the Aquatic Insects of North America. Kendal/Hunt, Dubuque, IA, USA.

    Google Scholar 

  • Mihuc, T. and D. Toetz. 1994. Determination of diets of alpine aquatic insects using stable isotopes and gut analysis. American Midland Naturalist 131: 146–155.

    Article  Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands, third edition. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Mittlebach, G. G. 1988. Competition among refuging sunfishes and effects of fish density on littoral zone invertebrates. Ecology 69: 614–623.

    Article  Google Scholar 

  • Moss, E. H. 1983. Flora of Alberta: a Manual of Flowering Plants, Conifers, Ferns and Fern Allies Found Growing Without Cultivation in the Province of Alberta, Canada. University of Toronto Press, Toronto, ON, Canada.

    Google Scholar 

  • Murkin, H. R. and L. C. M. Ross. 2000. Invertebrates in prairie wetlands. p. 201–248. In H. R. Murkin, A. G. van der Valk, and W. R. Clark (eds.) Prairie Wetland Ecology. Iowa State University Press, Ames, IA, USA.

    Google Scholar 

  • Nelson, R. D. 1989. Seasonal abundance and life cycles of chironomids (Diptera: Chironomidae) in four prairie wetlands. Ph. D. Dissertation. North Dakota State University, Fargo, ND, USA.

    Google Scholar 

  • Nummi, P., K. Sjöberg, and H. Pöysa. 2000. Individual foraging behaviour indicates resource limitation: an experiment with mallard ducklings. Canadian Journal of Zoology 78: 1891–1895.

    Article  Google Scholar 

  • Pehrsson, O. 1984. Relationships of food to spatial and temporal breeding strategies of mallards in Sweden. Journal of Wildlife Management 48: 322–339.

    Article  Google Scholar 

  • Prepas, E. E., B. Pinel-Alloul, D. Planas, G. Methot, S. Paquet, and S. Reedyk. 2001. Forest harvest impacts on water quality and aquatic biota on the Boreal Plain: introduction to the TROLS lake program. Canadian Journal of Fisheries and Aquatic Sciences 58: 421–436.

    Article  CAS  Google Scholar 

  • Pritchard, G. and S. B. Berte. 1987. Growth and food choice by two species of limniphilid caddis larvae given natural and artificial foods. Freshwater Biology 18: 529–535.

    Article  Google Scholar 

  • Resh, V. H. 1976. The biology and immature stages of the caddisfly genus Ceraclea in eastern North America (Trichoptera: Leptoceridae). Annals of the Entomological Society of America 69: 1039–1061.

    Google Scholar 

  • Schindler, D. W. 1998. Sustaining aquatic ecosystems in Boreal regions. Conservation Ecology 2: 18.

    Google Scholar 

  • Scudder, G. G. E. 1987. Aquatic and semiaquatic Hemiptera of peatlands and marshes of Canada. Memoirs of the Entomological Society of Canada 140: 65–98.

    Google Scholar 

  • Shemanchuk, J. A. 1972. Observations on abundance and activity of three species of ceratopogonidae (Diptera) in north eastern Alberta. Canadian Entomologist 104: 445–448.

    Google Scholar 

  • Sjöberg, K. and K. Danell. 1982. Feeding activity of ducks in relation to diel emergence of chironomids. Canadian Journal of Zoology 60: 1383–1387.

    Article  Google Scholar 

  • Street, M. 1977. The food of Mallard ducklings in a wet gravel quarry, and its relation to duckling survival. Wildfowl 28: 113–125.

    Google Scholar 

  • Thomas, R. 1998. The boreal forest natural region of Alberta. Alberta Environmental Protection, Natural Resources Service, Recreation & Protected Areas Division, Natural Heritage Planning and Evaluation Branch, Edmonton, AB, Canada.

    Google Scholar 

  • Thorp, J. H. and E. A. Bergey. 1981. Field experiments on responses of a freshwater, benthic macroinvertebrate community to vertebrate predators. Ecology 62: 365–375.

    Article  Google Scholar 

  • Tindall, A. R. 1960. The larval case of Triaenodes bicolour Curtis (Trichoptera: Leptoceridae). Proceedings of the Royal Entomological Society 35: 93–96.

    Google Scholar 

  • Tompkins, A. M. and J. H. Gee. 1983. Foraging behavior of brook stickleback, Culaea inconstans (Kirtland): Optimization of time, space, and diet. Canadian Journal of Zoology 61: 2482–2490.

    Article  Google Scholar 

  • van de Wetering, D., A. J. Richard, M. Gendron, S. A. Smyth, G. R. Stewart, and J. B. Pollard. 2000. Integrating Remote Sensing and GIS for Wetland and Waterbird Conservation in the Western Boreal Forest: Ducks Unlimited’s Western Boreal Forest Initiative. Crossing Borders, Science and Community: American Association for the Advancement of Science and Yukon Science Institute, Sept. 21–24, Whitehorse, Yukon, Canada.

    Google Scholar 

  • Vitt, D. H., L. A. Halsey, M. N. Thormann, and T. Martin. 1998. Peatland Inventory of Alberta, Phase 1: Overview of Peatland Resources in the Natural Regions and Subregions of the Province. (Prepared for the Alberta Peat Task Force.) University of Alberta, Edmonton, AB, Canada.

    Google Scholar 

  • Wetzel, R. G. 1983. Limnology, second edition. Saunders College Publishing, Philadelphia, PA, USA.

    Google Scholar 

  • Wiggins, G. B. 1996. Larvae of the North American Caddisfly Genera (Trichoptera), second edition. University of Toronto Press, Totonto, ON, Canada.

    Google Scholar 

  • Wiggins, G. B. and C. R. Parker. 1997. Caddisflies of the Yukon, with analysis of the Beringian and Holartic species of North America. p. 787–866. In H. V. Danks and J. A. Downes (eds.) Insects of the Yukon. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, ON, Canada.

    Google Scholar 

  • Wissinger, S., J. Steinmetz, J. S. Alexander, and W. Brown. 2004. Larval cannibalism, time constraints, and adult fitness in caddisflies that inhabit temporary ponds. Oecologia 138: 39–47.

    Article  PubMed  Google Scholar 

  • Zimmer, K. D., M. A. Hanson, M. G. Butler, and W. G. Duffy. 2001. Size distribution of aquatic invertebrates in two prairie wetlands, with and without fish, with implications for community production. Freshwater Biology 46: 1373–1386.

    Article  Google Scholar 

  • Zrum, L. and B. J. Harm. 2002. Invertebrates associated with submersed macrophytes in a prairie wetland: Effects of organophosphorus insecticide and inorganic nutrients. Archiv fuer Hydrobiologie 154: 413–445.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Hornung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornung, J.P., Foote, A.L. Aquatic invertebrate responses to fish presence and vegetation complexity in Western Boreal wetlands, with implications for Waterbird productivity. Wetlands 26, 1–12 (2006). https://doi.org/10.1672/0277-5212(2006)26[1:AIRTFP]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2006)26[1:AIRTFP]2.0.CO;2

Key Words

Navigation